Macroscopic Workload Model for Estimating En Route Sector Capacity
نویسندگان
چکیده
Under ideal weather conditions, each en route sector in an air traffic management (ATM) system has a certain maximum operational traffic density that its controller team can safely handle with nominal traffic flow. We call this the design capacity of the sector. Bad weather and altered flow often reduce sector capacity by increasing controller workload. We refer to sector capacity that is reduced by such conditions as dynamic capacity. When operational conditions cause workload to exceed the capability of a sector’s controllers, air traffic managers can respond either by reducing demand or by increasing design capacity. Reducing demand can increase aircraft operating costs and impose delays. Increasing design capacity is usually accomplished by assigning more control resources to the airspace. This increases the cost of ATM. To ensure full utilization of the dynamic capacity and efficient use of the workforce, it is important to accurately characterize the capacity of each sector. Airspace designers often estimate sector capacity using microscopic workload simulations that model each task imposed by each aircraft. However, the complexities of those detailed models limit their realtime operational use, particularly in situations in which sector volumes or flow directions must adapt to changing conditions. To represent design capacity operationally in the United States, traffic flow managers define an acceptable peak traffic count for each sector based on practical experience. These subjective thresholds— while usable in decision-making—do not always reflect the complexity and geometry of the sectors, nor the direction of the traffic flow. We have developed a general macroscopic workload model to quantify the workload impact of traffic density, sector geometry, flow direction, and air-to-air conflict rates. This model provides an objective basis for estimating design capacity. Unlike simulation models, this analytical approach easily extrapolates to new conditions and allows parameter validation by fitting to observed sector traffic counts. The model quantifies coordination and conflict workload as well as observed relationships between sector volume and controller efficiency. The model can support real-time prediction of changes in design capacity when traffic is diverted from nominal routes. It can be used to estimate residual airspace capacity when weather partially blocks a sector. Its ability to identify dominant manual workload factors can also help define the benefits and effectiveness of alternative concepts for automating labor-intensive tasks.
منابع مشابه
Analytical Workload Model for Estimating En Route Sector Capacity in Convective Weather
We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available airspace, (2) increase in the recurring task load through the rer...
متن کامل[EN-012] Validation of En Route Capacity Model with Peak Counts from the US National Airspace System
Airspace capacity estimates are important for managing air traffic and predicting the effectiveness of new airspace designs and proposed decision support tools. Because air traffic management relies on manual procedures, controller workload determines the traffic limit of most sectors. Current operational procedures for estimating capacity in United States airspace do not account for conflict a...
متن کاملSector Workload Model for Benefits Analysis and Convective Weather Capacity Prediction
En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because it does not account for conflicts and recurrin...
متن کاملThe Effect of Air Traffic Increase on Controller Workload
The Federal Aviation Administration (FAA) has been increasing the National Airspace System (NAS) capacity to accommodate the predicted rapid growth of air traffic. One method to increase the capacity is reducing air traffic controller workload so that they can handle more air traffic. It is crucial to measure the impact of the increasing future air traffic on controller workload. Our experiment...
متن کاملRisk-capacity Tradeoff Analysis of an En-route Corridor Model
A corridor is one of the new classes of airspace introduced with Next Generation Air Transportation System (NextGen). A well-designed corridor may reduce the airspace complexity, increase airspace capacity and decrease controller workload. This paper develops a computer simulation model for constructing risk-capacity tradeoff curves of en-route corridor concepts. Keywords-corridor; simulation, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007